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Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling

William J. Gray1, Evan Scannapieco2, & Daniel Kasen3,4

ABSTRACT

We carry out direct numerical simulations of turbulent astrophysical media that

explicitly track ionizations, recombinations, and species-by-species radiative cooling.

The simulations assume solar composition and follow the evolution of hydrogen, helium,

carbon, oxygen, sodium, and magnesium, but they do not include the presence of an

ionizing background. In this case, the medium reaches a global steady state that is

purely a function of the one-dimensional turbulent velocity dispersion, σ1D, and the

product of the mean density and the driving scale of turbulence, nL. Our simulations

span a grid of models with σ1D ranging from 6 to 58 km s−1 and nL ranging from 1016

to 1020 cm−2, which correspond to turbulent Mach numbers from M = 0.2 to 10.6. The

species abundances are well described by single-temperature estimates whenever M is

small, but local equilibrium models can not accurately predict the global equilibrium

abundances when M & 1. To allow future studies to account for nonequillibrium effects

in turbulent media, we gather our results into a series of tables, which we will extend in

the future to encompass a wider range of elements, compositions, and ionizing processes.

1. Introduction

Turbulence is ubiquitous in astrophysics, where the Reynolds number (Re), the ratio of of

the inertial forces to the viscous forces, is often orders of magnitudes higher than found on the

Earth. In the intergalactic medium, for example, Re typically exceeds 105, and in the warm

ionized interstellar medium Re & 107 (Braginskii 1958; Spitzer 1962), whereas the transition from

laminar to turbulent flow occurs at Re = 3 × 103 (e.g., Orszag & Kells 1980). In addition, in

many astrophysical regimes, rapid cooling causes turbulent velocities to exceed the sound speed,

and within such supersonic turbulence, random motions can compress a fraction of the material

to very high densities (e.g., Padoan et al. 1997; Mac Low & Klessen 2004; Federrath et al. 2008),

producing a complex, multi-phase medium.

Further complicating the picture is the fact that the recombination and collisional ionization

times for many species are long with respect to the “eddy turn-over time” on which existing
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turbulent motions decay and new turbulent motions are added. Thus, the conditions experienced

by a parcel of gas may change before equilibrium can be reached, such that the ionization structure

of the medium will depend not only on the small scale density and temperature distribution, but

on the velocity distribution as well. For these reasons, the turbulent structure of gas can have a

significant impact on line emission and absorption diagnostics. Most interpretations of observed

spectra, however, do not take into account these multi-phase and non-equilibrium effects, and full

galaxy simulations can not resolve the relevant small-scale structures to include them.

Furthermore, there are several reasons to expect that nonequillibrium effects are important in

interpreting current observations. For example, emission line studies of high star-formation rate,

ultraluminous infrared galaxies (ULIRGs) have progressed to the point that a number of sensitive

line diagnostics can now be considered. Recently, Soto & Martin (2012) were able to measure

emission lines from material in and around 39 ULIRGs, using the lines to construct line ratios

that are relatively insensitive to the presence of dust, but highly constraining of the sources of

phoionization (e.g., Kewley et al. 2006; Allen et al. 2008). They found that material up to ≈ 10

kpc from the galaxy centers was primarily heated by shocks rather than photoionization, as would

be expected for strongly turbulent media.

At larger distances, Werk et al. (2014) used the Cosmic Origins Spectrograph (Green et al.

2012) to measure low and intermediate ionization state ions in the circumgalactic medium (CGM)

within ≈ 100 kpc of low-redshift galaxies (see also, Tumlinson et al. 2013; Werk et al. 2013; Peeples

et al. 2014). To model these absorbers they adopted several important assumptions, namely: (i)

that the ions were co-spatial and arose from a single phase; (ii) that the medium was in ionization

equilibrium; and (iii) that the medium was primarily photoionized. Surprisingly, to match the

observations with such assumptions, the models had to adopt large ionization parameters, defined

as the ratio of ionizing photon density to the hydrogen density. Given the observed range of

metagalactic and host galaxy fluxes, these ratios corresponded to densities and pressures over

two orders of magnitude lower than expected from hydrostatic balance. However, given the long

recombination and cooling times in the diffuse CGM, even moderate energy input from decaying

turbulence may be sufficient to substantially change this picture.

It is with these issues in mind that we have carried out a comprehensive numerical survey

of the atomic structure and observational properties of turbulent astrophysical media. While a

large number of high-resolution studies of turbulence exist in the literature, the majority of these

are incompressible simulations carried out in the context of fluid-dynamics research (e.g., Vincent

& Meneguzzi 1991; Moin & Mahesh 1998; Ishihara et al. 2009), and compressible, isothermal

simulations carried out in the context of interstellar medium research (e.g., Kritsuk et al. 2007;

Federrath et al. 2008; Schmidt et al. 2009; Pan & Scannapieco 2010; Sur et al. 2014). Walch

et al. (2011) carried out simulations of both continuously-driven and decaying turbulence in solar

metallicity and 0.001 solar metallicity material in a medium with a one-dimensional turbulent

velocity dispersion, σ1D ≈ 30 in a 500 parsec cubical box with a mean hydrogen density of 1 cm−3,

using the chemical network of Glover & Mac Low (2007) to track the nonequillibrium chemistry
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associated with hydrogen and helium. Saury et al. (2014), on the other hand, studied the structure

of thermally bistable continuously-driven turbulent gas, using a cooling rate given as n2λ(T ) and

a heating rate given as nΓ(T ), where n was the local number density and Λ and Γ(T ) were global

functions accounting for atomic cooling, recombination on interstellar grains, and photo-electric

heating of small dust grains (Wolfire et al. 2003).

Here we carry out exact calculations of atomically-cooled astrophysical media that explicitly

track continuously-driven turbulent motions, radiative cooling by atomic species, and the nonequil-

librium ionization and recombination of several elements, for a grid of solar-metallicity models with

σ1D ranging from 6 to 58 km s−1 and the product of the mean density and the turbulent driving

scale ranging from 1016 to 1020 cm−2. In this first paper in this series, we track the non-equilbrium

ionization structure of hydrogen, helium, carbon, oxygen, sodium, and magnesium, focusing on

the limit in which ionization is purely collisional. Taking advantage of the scaling properties of

this case, we are able to fully span the relevant range of conditions experienced in atomically

cooled astrophysical plasmas: cataloging their physical properties for comparison with more ideal-

ized simulations and tabulating their species mass fractions and doppler parameters for use in the

interpretation of future theoretical and observational studies.

The structure of the paper is as follows. In §2 we describe our atomic chemistry and cooling

routines and their associated tests. In §3 we present our simulation setup and initial conditions,

and in §4 we describe our results, taking particular note of their probability density functions and

the effect of resolution and thermal conduction. Concluding remarks are given in §5.

2. Numerical Method

All simulations were performed with FLASH version 4.0.1 (Fryxell et al. 2000), a publicly-

available hydrodynamics code. We solve the hydrodynamics equations using an unsplit solver with

third-order reconstructions, which is based on the method presented in Lee (2013) provided by the

piecewise parabolic method (Colella & Woodward 1984; Woodward & Colella 1984). To ensure the

stability of the code as turbulence develops, we employ a hybrid Riemann solver which uses both an

extremely accurate but somewhat fragile Harten-Lax-van Leer-Contact (HLLC) solver (e.g., Toro

et al. 1994; Toro 1999) and a more robust, but more diffusive Harten Lax and van Leer (HLL)

solver (Einfeldt et al. 1991). The HLLC solver is a modification to the HLL solver that includes the

missing shear and contact waves, and it produces solutions that most accurately capture contact

discontinuities. However, in regions with strong shocks or rarefactions, the HLLC solver can fail,

and in such situations, we switch to the positivity-preserving HLL solver. Magnetohydrodynamic

effects were not included in this study.

In order to accurately determine the atomic properties of turbulent media, we also added two

new capabilities to the code: a non-equilibrium ionization package that tracks the ionization state

of several atomic species, and a cooling routine that takes into account the cooling from each of
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these ionized states individually. In this section we describe our numerical implementation of each

of these new capabilities.

2.1. Atomic Ionization

Our ionization network tracks the impact of 36 separate reactions acting on 24 species and 6

elements: hydrogen (H, H+), helium (He, He+, He2+), carbon (C-C4+), oxygen (O-O7+), sodium

(Na, Na+), magnesium (Mg, Mg+, Mg2+), and free electrons (e−). For each species, we track

several reactions, including radiative recombinations, dielectronic recombinations, and ionization

due to electron impacts. A summary of the reactions considered as well as their source is given in

Table 1.

Our implementation of this network follows the overall approach we have adopted in previous

studies (Gray & Scannapieco 2010; Scannapieco et al. 2012; Gray & Scannapieco 2013). Each

species is labeled by an index i, such that species i has Zi protons, Ai nucleons, and a mass density

of ρi. We then define a mass fraction of species i as Xi ≡ ρi/ρ, where ρ =
∑

i ρi, and define the

molar mass fraction as Yi ≡ Xi/Ai. For each species, a continuity equation for the molar mass

fraction is then given as Ẏi = Ri, where Ri is the total reaction rate due to all reactions.

Because of the complex ways that reaction rates depend on temperature and because of the

large range of possible abundances, the resulting rate equations are often ‘stiff’, i .e., the change

in time scales can be very different from one species to another. This requires implicit or semi-

implicit methods to track all the relevant reactions throughout our simulations. To handle this, we

use a variable-order Bader-Deuflhard method (e.g., Bader & Deuflhard 1983) which is well suited to

problems with dimension > 10 (e.g., Press et al. 1992; Bovino et al. 2013). The network presented

here also has the advantage of being sparse. That is, the Jacobian, defined as Ji,j ≡ ∂Ẏi/∂Yj , is

mostly comprised of zeros, with nonzero values falling on or near the diagonal. This allows us to

use the MA28 sparse linear algebra package included with FLASH (Duff et al. 1986) to compute

the matrix inverses required by the Bader-Deuflhard scheme, leading to a very fast and efficient

implementation. In general, the chemistry package runs slightly faster than the hydrodynamics.

As the species evolve over a given time step, the temperature can change as the internal

energy changes from ionizations and recombinations. Since the reaction rates are strong functions

of temperature, the network can become unstable if too large a time step is used, especially in regions

of strong cooling. To ensure testability but allow the simulation to evolve at the hydrodynamic

time step, we subcycle the rate equations within each cell on a network time step, defined as:

tnet ≡ min

(
α

Yi + 0.1Y+
H

Ẏi

)
, (1)

where α is a constant that controls the maximum abundance change allowed, which we default to

0.1. Using the current species abundances, the instantaneous change in abundances Ẏi is computed

using the analytic ordinary differential equations at the current temperature. Note that a small
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fraction of Y +
H is added as a buffer to prevent species with very small, but rapidly changing,

abundances from causing prohibitively small time steps and excessive subcycling. In addition to

this network subcycling, the Bader-Deuflhard method includes its own internal subcycling and time

step controls.

At the beginning of each cycle, tnet is compared to the hydrodynamic time step. If the hydro-

dynamic time step is smaller, then no subcycling is done and the hydrodynamic time step is used

to update the molar mass fractions. On the other hand, if the network time step is smaller, then

the molar mass fractions are updated using the tnet, which is then recalculated and compared to

the remaining hydrodynamic time step. This cycle continues until the network has advanced for

the full hydrodynamic time step.

To test the implementation of our network, we emulated a series of equilibrium models by

fixing the density and temperature in the simulation and running each case until the species reached

equilibrium. We ran a series of seven such models that spanned the temperature range between

104 and 107 K, at a fixed density of 2.0×10−20 g cm−3. All species were assumed to be neutral at

the start of each simulation, and the final abundances were compared to equilibrium models from

CLOUDY (version 10.01) (Ferland et al. 1998), using the “coronal equilibrium” command that

enforces only collisional ionizations.

We found that we matched the results from CLOUDY very well over a wide range in tem-

perature for all species. However, we did not match precisely for certain higher ionization states,

as seen, for example, in the middle panel of Fig. 1, but this is to be expected since our network

does not follow every ionization state for some elements. We did find excellent agreement for those

elements for which the ionization state changes by orders of magnitude with a modest increase in

temperature. For the purposes of comparison, we summed together the higher ionization states

that we do not follow and assigned their abundance to the highest state that we do follow. For

example, we track the abundance of C4+and not the two higher states. Therefore, the (dashed)

navy line in the middle left panel of Fig. 1 represents the summation of C4+, C5+, and C6+.

2.2. Cooling

The second capability we implemented is individual cooling rates associated with each ion in

the chemical network. To do this, we followed the procedure presented in Gnat & Ferland (2012)

who compiled the ion-by-ion cooling efficiencies for several atomic species for between 104-108 K.

Here we briefly outline this procedure, which we used to extend their work down to 5×103 K for

the ions in our network. Again, making use of CLOUDY, we construct a grid of models that span

5×103 to 108 K in temperature for each ion i of element E. Each model is then composed of

only hydrogen, electrons, and the ion under consideration. To ensure cooling from hydrogen is

suppressed, the hydrogen density is set to 1010 times smaller than the ion density. Following Gnat

& Ferland (2012), the electron and ion density is set to nEi = ne− = 1.0 cm−3 and nH = 10−10
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Fig. 1.— Comparison of the species abundances between CLOUDY and FLASH. Each panel shows

the results for a different set of atomic species. The lines corresponds to the CLOUDY results

while the points are from FLASH. We plot the equilibrium temperature along the x-axis and the

fractional abundance of each species, i.e. Fi = ni/ns where ns is the elemental abundance, for each

species as the y-axis. A universal legend is given at the top of the figure and the same ionization

state is given by the same color and line style in each panel. Top Left: Hydrogen. Top Right:

Helium. Middle Left: Carbon. Middle Right: Oxygen. Bottom Left: Sodium. Bottom Right:

Magnesium.
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cm−3. This produced a cooling rate for each ion as a function of temperature, and a comparison of

these rates to those of Gnat & Ferland (2012) show identical results where the temperature range

overlapped.

For those species in which we do not follow every ionization state in our simulation individually

(such as C4+, which captures the joint abundance of C4+, C5+, and C6+) we formed a composite

cooling curve as:

Λ(T ) =

∑
i ni(T )Λi(T )∑

i ni(T )
, (2)

where Λi(T ) is the cooling rate of ion i and ni(T ) is the relative abundance of ion i in equilibrium

at a temperature T . This composite is then used as the cooling rate for the highest ionization

state followed. Similarly, we included cooling from nitrogen, neon, silicon, sulphur, calcium, and

iron. Again, we assumed that the relative ionization abundances were determined by the collisional

ionization equilibrium. This final cooling curve has the form

Λother(T ) =
∑
j

∑
i nj,i(T )Λj,i(T )∑

i nj,i(T )
(3)

where j loops over nitrogen, neon, silicon, sulphur, calcium, and iron.

With the addition of cooling, an important timescale is created, namely one that relates the

total internal energy to energy loss rate per time as,

tcool =
αcEi

Ėi
, (4)

where Ei is the internal energy, Ėi is the energy loss rate, and αc is a constant between 0 and 1.

As is the case with reaction rates, cooling rates are strong functions of temperature and species

abundances, both of which can change drastically over a single chemistry time step. Therefore,

we also employed a method of subcycling the cooling on a cooling time scale within the chemistry

routine. At the beginning of each cooling cycle, we calculate the cooling time scale using a given

αc(=0.1). If this is shorter than the chemistry time step, we cycle over the cooling time scale,

recalculating the temperature, cooling rate, and time scale at the end of each cycle. This proceeds

until we have reached the chemistry time step.

Since we only consider two body interactions, the cooling time should scale linearly with

density. To test this scaling, along with the overall dependence of our routines on temperature, we

ran several tests in which the medium was initially completely ionized and the initial temperature

was set to 1×106 K, each of which had a different density between 5.0×10−27 and 1.0×10−25 g

cm−3. These tests recovered the expected scaling with density, and also confirmed that cooling

was always efficient at high temperatures and much less efficient at ≈104 K, when most elements

become neutral. Finally, we performed additional tests to ensure that the interpolation was smooth

and always reproduced the table values under the correct conditions.
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Table 1: List of the reactions considered and their source. Radiative Recombination rates for all

species are taken from Badnell (2006b). (1) Badnell (2006a), (2) Bautista & Badnell (2007), (3)

Colgan et al. (2004), (4) Colgan et al. (2003), (5) Altun et al. (2004), (6) Zatsarinny et al. (2004b),

(7) Mitnik & Badnell (2004), (8) Zatsarinny et al. (2004a), (9) Altun et al. (2006), (10) Verner &

Ferland (1996), (11) Voronov (1997), and (12) Glover & Abel (2008)

Number Reaction Source

0001 He++ e−→ He 1

0002 C++ e−→ C 5

0003 C2++ e−→ C+ 4

0004 C3++ e−→ C2+ 3

0005 C4++ e−→ C3+ 2

0006 O++ e−→ O 7

0007 O2++ e−→ O+ 6

0008 O3++ e−→ O2+ 5

0009 O4++ e−→ O3+ 4

0010 O5++ e−→ O4+ 3

0011 O6++ e−→ O5+ 2

0012 O7++ e−→ O6+ 1

0013 Mg++ e−→ Mg 8

0014 Mg2++ e−→ Mg+ 9

0015 Na++ e−→ Na 8

0016 H++ e−→ H 12

0017 H + e−→ H++ 2 e− 11

0018 He + e−→ He++ 2 e− 11

0019 He++ e−→ He2++ 2 e− 11

0020 C + e−→ C++ 2 e− 11

0021 C++ e−→ C2++ 2 e− 11

0022 C2++ e−→ C3++ 2 e− 11

0023 C3++ e−→ C4++ 2 e− 11

0024 O + e−→ O++ 2 e− 11

0025 O++ e−→ O2++ 2 e− 11

0026 O2++ e−→ O3++ 2 e− 11

0027 O3++ e−→ O4++ 2 e− 11

0028 O4++ e−→ O5++ 2 e− 11

0029 O5++ e−→ O6++ 2 e− 11

0030 O6++ e−→ O7++ 2 e− 11

0031 Mg + e−→ Mg++ 2 e− 11

0032 Mg++ e−→ Mg2++ 2 e− 11

0033 Na + e−→ Na++ 2 e− 11

0034 He2++ e−→ He+ 12

0035 He++ H → He + H+ 12

0036 He + H+→ He++ H 12
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3. Model Framework & Initial Conditions

With these procedures in place, we carried out a suite of simulations of turbulent media under

a wide variety of conditions. To drive turbulence, we made use of an artificial forcing term F,

incorporated into the momentum equation as

∂ρv

∂t
+∇(ρvv) +∇P = ρF, (5)

where ρ is the density, P is the pressure, and v is the velocity. The forcing term was modeled as a

stochastic Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein 1930; Schmidt et al. 2009; Federrath

et al. 2010; Pan & Scannapieco 2010) with a user-defined forcing correlation time tf . For all the

simulations presented here, turbulence was driven solely though solenoidal modes (i.e. ∇ · F = 0)

in the range of wavenumbers 1 ≤ Lbox|k|/2π ≤ 3, such that the average forcing wavenumber was

k−1
f ' 2Lbox/2π, with Lbox the size of our turbulent box, which was fixed at 100 parsecs on a side.

This turbulence was always continuously driven throughout the simulation runtime.

All our simulations were performed using the multispecies extension for the ideal gas equation

of state, which calculates the important thermodynamic quantities based on the properties of

the included species (Colella & Glaz 1985). In particular, the average atomic mass can change

dramatically as the gas either recombines or becomes ionized. While FLASH has an adaptive

mesh capability, all simulations were performed using a cubic uniform grid with periodic boundary

conditions.

The material is assumed to have solar metallicity, and each run is defined by an initial uniform

density and the strength of turbulent forcing. The ionization state of each ion is initially set to

be consistent with a 105 K gas in collisional ionization equilibrium, except for the lowest velocity

dispersion runs where all species were assumed to be neutral with an initial temperature of 104 K.

For most cases, the eddy turnover time scale was much shorter than the time scale for the chemistry

to come to equilibrium. To prevent long run times, we implemented a method of accelerating the

chemistry such that it reached the steady state solution in a much shorter number of cycles. Once

the turbulence had reached a steady state, normally after a few eddy turnover times, we carried

out a ‘kick cycle’ over which the chemistry was evolved for a much longer time than either the

local hydrodynamic time step or the eddy turnover time scale. The result of this procedure was to

force each cell to nearly reach collisional ionization equilibrium. Each model was then run normally

until it reached a global steady state in terms of both the hydrodynamic variables and the chemical

abundances.

In reactions that involve free electrons recombining with ions, the optical depth of the envi-

ronment becomes important. If the environment is optically thin (Case A; Osterbrock 1989), the

ionizing photons were allowed to escape, while in the optically thick case (Case B), the photons

were reabsorbed by a nearby neutral atom, which has the effect of lowering overall recombination

rate. We included these effects for hydrogen, which has the highest number density and provides

most of the free electrons. To best estimate the appropriate case for each run, at each time step
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we calculated the optical depth as,

τH = X̄H ρ̄σνLbox/mH , (6)

where X̄H is the global neutral hydrogen mass fraction, ρ̄ is the mean ambient density, σν =

3.3× 10−18 cm2 is the photoionization cross section for hydrogen, and mH is the mass of hydrogen.

The recombination rate for hydrogen is then

krec = e−τHkA + (1.0− e−τH )kB, (7)

where krec is the new recombination rate and kA and kB are the Case A and B recombination

rates respectively, which differ by a factor . 2. When the optical depth is low, e−τH ≈ 1.0 and we

defaulted to the Case A rate. Conversely when the optical depth is large, e−τH ≈ 0.0 and we used

the Case B rate.

As noted above, we have defined the cooling rates for each species between 5000 and 108 K.

In regions where the temperature is below this range, we turned off cooling while allowing the

chemistry to evolve, and we enforced an absolute temperature floor at 100 K.

4. Results

4.1. Model Parameters

Our goal is to study the steady state ionization structure of a gas that is being stirred with 1D

velocity dispersions between 6 and 58 km s−1 (corresponding to 3D velocity dispersions between 10

and 100 km s−1), over a wide range of densities. In particular, we are interested in cases in which

the heating from the turbulent stirring is balanced by atomic cooling.

The parameter space spanned by our simulations is greatly simplified by the dependencies of

turbulent decay and cooling on density and length scale. For a given steady state, the average

turbulent energy dissipation rate per unit volume, or consequently, the average heating rate per

unit volume is

Γ̄ = ρ̄σ3/L erg s−1 cm−3, (8)

where σ is the velocity dispersion, ρ̄ is the average density, and L is the driving scale of the

turbulence. Conversely, the average cooling rate per unit volume is

Λ̄ ∝ ρ̄2λ̄(T )/(µmH)2 erg s−1 cm−3, (9)

where µ is the average particle mass and λ̄(T ) is the average cooling rate. Equating these two

terms gives

λ̄(T ) ∝ σ3/(Lρ), (10)
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Table 2: Summary of the models. Those models with the appended C denote runs made with

thermal conduction while those appended with High denote high resolution models with twice the

normal resolution. Those denoted with an asterisk denote models that result in thermal runaway.
Name ρ̄ Column σ1D TMW TVW MMW MVW s̄ σs sskew skurt σs,exp

N1E14 S6* 7e-31 1.1e+14 5.8 5.52 5.51 0.29 0.30 0.004 0.05 -0.60 1.01 0.15

N1E15 S6 7e-30 1.1e+15 5.8 2.55 2.54 0.29 0.30 0.005 0.05 -0.50 1.74 0.15

N1E16 S6 [Low] 7e-29 1.1e+16 5.8 1.49 1.48 0.51 0.51 0.005 0.13 -0.84 1.90 0.25

N1E17 S6 7e-28 1.1e+17 5.8 1.26 1.24 0.61 0.62 0.001 0.16 -0.79 1.48 0.30

N1E16 S12* 7e-29 1.1e+16 11.5 26.85 26.85 0.21 0.21 0.002 0.02 -0.54 1.95 0.10

N3E16 S12 2e-28 3.0e+16 11.5 7.01 6.99 0.44 0.45 0.006 0.08 -0.60 1.43 0.22

N1E17 S12 7e-28 1.1e+17 11.5 1.30 1.21 1.06 1.15 -0.061 0.46 -0.57 0.62 0.53

N3E17 S12 2e-27 3.0e+17 11.5 1.14 1.02 1.26 1.39 -0.119 0.61 -0.83 2.16 0.63

N7E16 S20* 5e-28 7.6e+16 20.2 34.05 33.99 0.36 0.37 0.006 0.06 -0.60 1.95 0.18

N1E17 S20 [Med] 1e-27 1.5e+17 20.2 5.54 5.31 0.91 0.96 -0.021 0.31 -0.68 1.16 0.46

N7E17 S20 5e-27 7.6e+17 20.2 1.01 0.82 2.39 2.95 -0.381 0.98 -0.19 -0.27 1.07

N1E18 S20 1e-26 1.5e+18 20.2 0.87 0.69 2.78 3.56 -0.497 1.11 -0.21 -0.11 1.20

N4E17 S35* 3e-27 4.6e+17 34.6 176.12 175.95 0.31 0.31 0.004 0.05 -0.49 1.34 0.16

N1E18 S35 1e-26 1.5e+18 34.6 1.12 0.89 4.13 5.25 -0.798 1.42 -0.33 0.11 1.44

N4E18 S35 3e-26 4.6e+18 34.6 0.90 0.73 4.63 6.49 -0.877 1.52 -0.37 0.16 1.56

N1E19 S35 1e-25 1.5e+19 34.6 0.83 0.64 5.32 7.65 -0.844 1.43 -0.17 -0.10 1.66

N3E18 S58* 2e-26 3.0e+18 57.7 67.55 64.53 0.91 0.96 -0.005 0.32 -0.54 0.73 0.46

N1E19 S58 [High] 7e-26 1.1e+19 57.7 1.06 1.09 7.98 9.83 -1.196 1.77 -0.32 0.07 1.80

N3E19 S58 2e-25 3.0e+19 57.7 0.86 0.71 8.79 13.55 -1.375 1.93 -0.32 -0.16 1.96

N1E20 S58 7e-25 1.1e+20 57.7 0.77 0.64 10.64 14.51 -1.441 2.01 -0.46 0.33 2.00

N1E16 S6 High 7e-29 1.1e+16 5.8 1.49 1.48 0.45 0.45 0.009 0.10 -0.44 1.12 0.22

N1E16 S6 C 7e-29 1.1e+16 5.8 1.50 1.49 0.49 0.49 0.007 0.12 -1.11 3.35 0.24

N1E17 S20 High 1e-27 1.5e+17 20.2 5.66 5.43 0.89 0.94 -0.021 0.32 -0.68 0.90 0.45

N1E17 S20 C 1e-27 1.5e+17 20.2 5.61 5.35 0.88 0.93 -0.028 0.34 -0.64 0.84 0.44

N1E19 S58 High 7e-26 1.1e+19 57.7 0.95 0.81 7.68 10.64 -1.173 1.74 -0.23 -0.22 1.84

N1E19 S58 C 7e-26 1.1e+19 57.7 1.07 1.14 7.36 10.41 -1.303 1.94 -0.57 0.66 1.83

Notes. ρ̄ is the mean density in units of gm cm−3. Column is the column density in units of cm−2. σ1D is the 1-D

velocity dispersion in units of km/s. TMW and TVW are the mass-weighted and volume-weighted temperatures in units

of 104 K. MMW and MVW are the mass-weighted and volume-weighted turbulent Mach numbers. s̄ is the volumed

averaged value of s ≡ ln ρ/ρ̄. σs, sskew and skurt are the rms, skewness and kurtosis excess of the volume-weighted

probably density function of s. σs,exp is the expected variance from Eqn. 12.
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Fig. 2.— Hydrodynamical and chemical evolution of N1E17 S20. Top Left: The (red) dash-dotted

line shows the maximum temperature, the (blue) dashed line shows the minimum temperature,

the (black) dotted line shows the volume weighted temperature, and the (black) solid shows the

density weighted temperature. Top Center: The (blue) solid line shows the minimum density and

the (red) dotted line shows the maximum density. Top Right: The (blue) solid line shows the

total energy, the (red) dotted line shows the internal energy, and the (dashed) green line shows the

kinetic energy. Middle Row: The fractional abundances of the chemical species where each panel

shows a different element as noted by the panel legends. Bottom Left: Same as middle row for

Oxygen. Bottom Center: Same as the middle row. For convenience we have combined Na and Mg.

Bottom Right: The (blue) solid, left axis line shows the Mach number of the simulation and the

(red) dashed, right axis line is the 1D velocity dispersion.
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slice taken from our three representative models, Low (left column), Med (center), and High (right)
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or in other words that the overall thermal distribution of the gas is only dependent on σ and

the column density. For the velocity dispersions we are interested in, for which cooling balances

heating, this column density ranges between 1016 and 1020 cm−2.

Furthermore, because collisional ionization and recombination rates are also proportional to

density squared, the ratio of the eddy turnover time defined here as teddy = Lbox/2σ to the density-

temperature averaged recombination time, trec, is also purely a function of σ and column density,

with trec ≥ teddy for many species. This means that many of the species of interest experience a

wide range of conditions within a recombination time, which, as we shall see below in more detail,

can lead to abundance ratios that can not be predicted from local collisional equilibrium.

A summary of the simulation runs is given in Table 2, with the name of each run referring

to its column density and 1D velocity dispersion. In the analysis that follows, we have chosen

three representative models to describe in detail: N1E16 S6, N1E17 S20, and N1E19 S58, which

span a range of densities and velocity dispersions, We will refer to these as Low, Medium, and

High respectively, as they represent cases with progressively higher velocities and turbulent Mach

numbers. Figure 2 shows the hydrodynamic and chemical evolution of N1E17 S20 in units of the

eddy turnover time scale. The effect of the chemical kick is apparent at teddy ≈ 5 as the large jump

in the fractional abundances of each species, e.g., FC = FCi/
∑

i FCi . After this adjustment, the

species quickly find a global steady state that is distinct from instantaneous collisional ionization

equilibrium.

Figure 3 shows the density, temperature, and the fraction of carbon in the commonly observered

C3+ state on slices extracted from each of our representative models after they have reached a global

steady state. Here we see that while density and temperature variations are small at low turbulent

Mach numbers, the more highly turbulent simulations display a wide range of temperatures and

densities, which are only weakly correlated with each other. Similarly, the distribution of the

fraction of C3+, which has a recombination time that is comparable to teddy, displays features

that sometimes follow the temperature distribution, but sometimes show substantial variations,

indicating that FC3+
is often very different than would be estimated from local collisional ionization

equilibrium. Below we study each of these effects in turn.

4.2. Probability Density Functions

The top panel of Figure 4 shows the two-dimensional volume-weighted probability density func-

tions, which quantify the fraction of the volume in the simulations located at various temperatures

and densities.

Consistent with the expectations from Figure 3, the gas in the Low simulation has a very

small spread of temperatures and densities. In the Medium simulation, on the other hand, the

temperatures and densities span roughly an order of magnitude. In this case, for which the (mass

weighted) turbulent Mach number is MMW = 0.91, T is roughly proportional to n−1, as would occur
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Fig. 4.— Top: Two-dimensional probability density function for simulations Low (Left), Med

(Center), and High (Right). Temperature is given along the y-axis in units of K and the number

density is given along the x-axis. Here we have normalized by the average number density, n̄,

which corresponds to -4.43, -3.02, and -1.94 for Low, Med, and High respectively. All contours are

labeled by their values relative to the PDF bin with the most mass. Bottom Left: One-dimensional

probability density functions for Low, Med, and High. The x-axis gives the logarithmic density.

Low is shown by the (red) solid line, Med is shown by the (blue) dashed line, and High is shown by

the (green) dotted line. The density variance increases as the stirring increases. Also note that the

profiles are not symmetric with longer tails toward lower densities. Bottom Right: One-dimensional

temperature PDFs for Low, Med, and High. The x-axis gives the temperature. The lines have the

same meanings as in the other panel.
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indicates longer tails toward lower densities. Bottom: The kurtosis. At subsonic Mach numbers

most models show a more peaked distribution while at supersonic Mach numbers the distribution

is either nearly gaussian or slightly flatter than gaussian.
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exactly in a constant pressure medium, but occurs here with a considerable spread, consistent with

the presence of transonic motions. Finally, in the High case, with a Mach number of MMW =

8.0, density and temperature span nearly six orders of magnitude and four orders of magnitude,

respectively. Furthermore, these quantities are largely uncorrelated with each other, as would be

expected in a medium filled with strong, supersonic shocks.

While our simulations are the first to include full rate equations and cooing for a large number

of atomic species, several studies of isothermal, supersonic turbulence have shown that the gas

approximates a lognormal distribution (Vazquez-Semadeni 1994; Padoan et al. 1997; Klessen 2000;

Ostriker et al. 2001; Li et al. 2003; Kritsuk et al. 2007; Federrath et al. 2008; Lemaster & Stone

2008; Schmidt et al. 2009; Federrath et al. 2010; Glover et al. 2010; Padoan & Nordlund 2011;

Collins et al. 2011; Price et al. 2011; Molina et al. 2012), defined as

ps ds =
1√

2πσ2s
exp

[
−(s− s0)2

2σ2s

]
, (11)

where s is the logarithmic density, s ≡ ln(ρ/ρ̄).

The mean logarithmic density in this case is related to the standard deviation as s0 = −σ2s/2.

The density variation at a particular location is produced by the successive passage of shocks

with mach numbers independent of the local density, which gives a physical explanation for the

lognornal density distribution. For an isothermal distribution, the variance of the logarithmic

density corresponds to

σ2s = ln(1 + b2M2), (12)

where b is a constant that depends on the forcing that drives the turbulence. Federrath et al. (2008)

showed that b = 1 for purely compressive, ∇× F = 0, forcing, while b = 1/3 for purely solenoidal,

∇ · F = 0, forcing.

The bottom, left panel of Figure 4 shows the probability density functions of the logarithmic

density, which take on a gaussian profile for runs Low, Med, and High. As expected, the width

of the profile increases as the steady state Mach number increases, with Low having the smallest

width and High having the largest. In Table 2 we show several important statistical quantities in

terms of the logarithmic density for each run. In particular, we calculate the first four moments of

the logarithmic density distribution: the mean, variance, skewness, and kurtosis.

The mean and variance have the usual definitions, while the skewness,
〈
(s− s0)3

〉
/σ3/2, mea-

sures the symmetry of the distribution. A positive skewness denotes a distribution that has a long

tail toward higher densities while a negative skewness represents a long tail toward lower densities.

The kurtosis,
〈
(s− s0)4

〉
/σ2 quantifies how close the underlying distribution is to a Gaussian. A

larger kurtosis represents a flatter distribution while a lower value denotes a narrower distribution,

with a gaussian distribution having a kurtosis equal to 3. In Table 2 we give the kurtosis excess

where this factor of 3 is subtracted.

Figure 5 shows the variance, skewness, and kurtosis excess as a function of Mach number for
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each model. The solid line in the top panel shows the expected σs-M relation from equation 12, with

b = 0.5. We find that for supersonic flows the models match very well with equation 12 but find a

significant mismatch for subsonic flows. A least-squares fit to our points to equation 12 suggests a

good fit to the M & 1 points with b = 0.53. However, this does not match the expectation from

Federrath et al. (2008) who suggest a value of b = 1/3 for purely solenoidal driving, for isothermal

turbulent models.

The right panel of Figure 4 show the one-D temperature PDFs for runs Low, Med, and High. As

expected, the width of the PDF grows with the strength of the stirring, meaning that isothermality

is not a good approximation for our high mach number runs, which may help explain the discrepancy

in b. Note also the large temperature spread causes a few cells in run High to reach the temperature

floor, due to the extreme PdV work done by the stirring, but this is only a minor effect.

The top row of Figure 4 shows the two dimensional PDFs of density and temperature for run

Low, Med, and High. For the Low case, the slight stirring has only produced very minor density

contrasts, leaving a mostly uniform medium. However, there is a slight tail towards lower density

and lower temperature. This leads to a highly concentrated phase diagram where essentially all

the mass has the same temperature. This can also be seen in the left column of Figure 3 where we

show slices of density, temperature, and the abundance of C3+.

A similar trend is seen for run Med in the center panel of Figure 4 and the center column of

Figure 3. Although, as mentioned below, the average mach number of the flow is higher than Low;

turbulence has not produced any strong density contrasts. In fact, the density is almost always

within a factor of 3 of the mean. As in the case for Low, the density and temperature slices are

largely uniform.

Finally, the High case is quite different than either Low or Med. Large density and temperature

contrasts are seen, due to the much higher final mach number (M = 8.0). This produces a very wide

density-temperature PDF as shown in the right panel of Figure 4 with density and temperature

spanning nearly six orders of magnitude and four orders of magnitude respectively. These contrasts

are plainly seen in the right column of Figure 3.

Finally, the bottom row of Figure 3 shows slices of FC3+ . In general the density and temperature

distributions are very similar. For example, the density and temperature slices for High show that

the complex density structure is largely mirrored in the temperature. However, this is not the case

for C3+. In fact, there is only a weak relation between these quantities. As we discuss below,

this highlights the need to follow the nonequillibrium atomic chemistry when estimating atomic

ionization states.
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Fig. 6.— Left: Steady state species fractions for each of the representative runs. Each species is

given along the x-axis, and the y axis gives log10 of the fraction of the total mass in a given element

that is found in a particular ionization state. The (red) triangles show Fmean, the expected species

fraction assuming collisional ionization equilibrium at the mass weighted mean temperature. The

(blue) diamonds show FTurbEq, the fraction assuming collisional ionization equilibrium using the

temperature PDF. The (black) stars show, FTurb, the final global steady state fractions. Right:

Comparison between the ionization and recombination time scales for each ion. The (red) squares

and (blue) pentagons are the ratios of the recombination and ionization time scales with the eddy

turn over time, respectively.
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4.3. Ionization States

The large spread in both density and temperature in our simulations, particularly in the super-

sonic cases, naturally translates into a large spread in chemical species. In fact, the instantaneous

chemical makeup in a given cell is a strong function of not only the current temperature and density

but its thermodynamic history.

To get an idea of how the global steady state abundances depend on our full treatment of

turbulence, cooling, and chemical reactions, we calculated approximate abundances using two ap-

proaches. For our first method, labeled FMean, we assumed the full medium was in collisional

ionization equilibrium at the mass weighted average temperature, and we calculated the ionization

states for each species using CLOUDY. This method quantifies the errors involved with assuming

constant temperature and density conditions in a region with significant turbulent motions. In our

second estimate, labeled FTurbEq, we used the final temperature PDF to calculate a mass-weighted

average abundance for each species, again using CLOUDY to calculate collisional ionization abun-

dances for the full range of conditions. This method quantifies the errors involved with failing to

track the nonequillibrium abundances accurately by including reaction rates within the simulations.

The left panel of Figure 6 shows the comparison between each of these estimates to the steady

state abundances for Low, Med, and High. The name of each species is listed along the x-axis

and the fractional species abundances are given along the y-axis. These values are also listed in

Table 3. As shown in above, for the Low simulation, with a mean temperature of 1.5× 104K and

a Mach number of 0.5, the spread in the temperature-density PDF is small. Hence, the differences

between the global species abundances and those from our two estimates are mostly minor, with

most of the true values matching the simpler calculations within a factor of ≈ 2 for most elements

with significant abundances. Two notable exceptions to this agreement are C2+ for which the true

abundance is ≈ 30 times greater than the FMean and FTurbEq, values, and He+, which has a long

recombination time, and a true abundance ≈ 20 times greater than expected from more simple

estimates.

In the Med case, for which the mass-weighted mean temperature is TMW = 5.5 × 104 and

M = 0.92, the difference between the true values and simple estimates becomes more pronounced.

Here the true abundances of species such as He, C, C+, C3+, O3+, and Mg, differ by a factor of

≈ 2 from our simple estimates, while He2+ and C4+ are more abundant by ≈ 5 than expected

from either approximate approach. Note also that there is no clear trend for the more complicated

FTurbEq estimate to be a better predictor than the simple constant temperature approach.

Finally, in the High case, with TMW = 1.1×104K and M = 8.0, the abundances of many species

differ by several order of magnitude from simple expectations. For example, the abundance of H+

is over two orders of magnitude higher than it is in the constant temperature models, but close to

the FTurbEq estimate. The abundance of He, on the other hand, is very near the value expected

from FMean and roughly twice the FTurbEq estimate, while and He2+ is many orders of magnitude

higher than expected by the FMean estimate, but still over 200 times less abundant than expected in
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Table 3: Species fractions in our representative runs.
Low Low Low Medium Medium Medium High High High

FMean FTurbEq FTurb FMean FTurbEq FTurb FMean FTurbEq FTurb

H -0.23 -0.18 -0.12 -3.47 -3.86 -3.32 -0.37 -0.00 -0.42

H+ -0.39 -0.46 -0.63 0.00 0.00 -0.00 -0.24 -2.35 -0.21

He -0.00 0.00 0.00 -2.54 -2.36 -1.57 -0.03 0.00 -0.23

He+ -3.26 -4.44 -4.49 -0.07 -0.01 -0.03 -1.14 -8.03 -0.64

He2+ -17.28 -30.00 -30.00 -0.86 -1.61 -1.40 -3.07 -30.00 -0.73

C -0.67 -0.51 -0.35 -3.10 -3.24 -2.78 -0.37 -0.02 -0.48

C+ -0.11 -0.16 -0.26 -0.73 -0.66 -0.47 -0.25 -1.32 -0.45

C2+ -3.67 -5.15 -5.19 -0.10 -0.11 -0.18 -1.75 -9.79 -0.74

C3+ -14.19 -30.00 -18.41 -1.98 -2.55 -2.33 -3.31 -30.00 -1.51

C4+ -18.56 -30.00 -30.00 -3.47 -5.94 -4.12 -4.15 -30.00 -0.99

O -0.28 -0.22 -0.14 -3.07 -2.91 -2.61 -0.37 -0.00 -0.42

O+ -0.33 -0.40 -0.56 -0.44 -0.31 -0.22 -0.25 -2.24 -0.44

O2+ -7.62 -8.81 -8.49 -0.21 -0.29 -0.41 -2.02 -15.66 -0.84

O3+ -17.97 -30.00 -30.00 -1.88 -2.68 -2.38 -3.20 -30.00 -1.10

O4+ -18.92 -30.00 -30.00 -5.92 -30.00 -6.05 -4.73 -30.00 -1.63

O5+ -18.72 -30.00 -30.00 -11.67 -30.00 -11.69 -6.21 -30.00 -2.33

O6+ -18.85 -30.00 -30.00 -13.14 -30.00 -30.00 -7.53 -30.00 -1.98

O7+ -19.68 -30.00 -30.00 -20.89 -30.00 -30.00 -15.17 -30.00 -10.37

Na -4.26 -4.27 -4.07 -5.86 -6.29 -6.11 -2.10 -3.37 -1.63

Na+ -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.01

Mg -1.40 -1.29 -1.12 -6.37 -6.63 -5.09 -0.65 -0.58 -0.74

Mg+ -0.18 -0.08 -0.07 -3.41 -3.49 -2.94 -0.31 -0.13 -0.61

Mg2+ -0.53 -0.94 -1.11 -0.00 -0.00 -0.00 -0.55 -3.24 -0.24
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the FTurbEq estimate. Similarly, C2+, C3+, C4+, O2+, O3+, and O4+ which are almost completely

absent in the FMean, are all present at significant levels, although less so than expected by FTurbEq.

On the other hand, Mg+ is present at a level much less than expected by the FMean estimate, but

more than predicted by FTurbEq. These results not only show that the presence of turbulence can

introduce significant abundance differences when M ≈ 1, and change the abundances completely

when M & 1, but that these differences can only be predicted by full nonequillibrium calculations

such as the ones carried out here.

To get an idea of the cause of the large discrepancy between carbon and oxygen in the High

case, we compare the ionization and recombination time scales of these ions. This is shown in the

right panel of Figure 6. We find that while the recombination time is short compared to the eddy

turnover, the ionization timescale for these ions is long. Physically, this suggests that even though

a parcel of gas is heated due to the crossing shocks, the ions do not have sufficient time to fully

ionize. This explains the lower abundances found for FTurbEq compared to FMean for C2+through

C4+ and O3+through O7+ for case High.

4.4. Thermal Conduction and Resolution

In our simulations described above, energy transport is purely by advection. Yet even in a

supersonic medium, the large difference in the thermal velocities of the electrons and the ions can

lead to significant energy transport through conduction. In the case in which many collisions take

place over the scale length for temperature variations, the thermal conductivity is given by

κ = ν

(
mp

me

)1/2

= 5.2× 10−5T
5/2
4 n−1 cm2 s−1, (13)

where ν is the plasma viscosity and T is the temperature in units of 104 K (Braginskii 1958;

Spitzer 1962). Comparing this to the velocity dispersion and length scale of the turbulence gives

σ1DL/κ ∝ σ1DnL. Like the ratios of timescales discussed in section 4.1, this is dependent only on

the column density and turbulent velocity. In fact, the Reynolds number of the medium also only

depends on these two quantities, although in practice the numerical viscosity in our simulations is

much greater than the true physical value.

In the case in which the scale length for temperature variations is smaller than the collisional

mean free path of the electrons, the conduction becomes saturated. The mean free path is λi =

1.3 × 1018cm−2T 2
7 /ni,c, where ni,c is the ion density, the saturated flux is Fsatαelene

√
(kT )3/me,

where αele is the electron conductivity flux-limiter coefficient, ne is the electron number density,

and me is the mass of the electron (Cowie & McKee 1977). From these scalings we can see that

L/λi and Fsat/nkT (σ) are purely functions of column density and the temperature structure of the

medium. This means that neither unsaturated or saturated conduction introduces a new parameter

that must be spanned by our simulations.
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Fig. 7.— Effect of resolution and thermal conduction. Top Left: Effect of electron conduction on

the logarithmic density PDF. The solid lines are the fiducial models while the dashed lines show the

model with conduction. Top Right: Effect of electron conduction on the temperature PDF. Bottom

Left: Comparison between our fiducial models and models with twice the base resolution on the

logarithmic density PDF. Bottom Right: Comparison between our fiducial models and models with

twice the base resolution on the temperature PDF. The solid lines are the fiducial models while the

dashed lines show the higher resolution models.
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To test the impact of electron conduction, we re-ran our representative simulation using of the

implicit SpitzerHighZ conductivity module within FLASH, a Larsen flux limiter, and an electron

conductivity flux-limiter coefficient of αele = 0.2. The upper panel of Figure 7 compares the

logarithmic density PDFs from our nominal models, with these conductions runs, from these runs,

which were roughly twice as expensive in terms of computer time. For Low the PDF profile is

essentially unchanged from the nominal model, in particular with regards to the mean and variance

of s. Table 2 presents the statistical measures between our nominal runs and those with electron

conduction. There is a slight increase in the skewness and kurtosis which produces a slightly longer

distribution to lower densities and slightly more peaked distribution. Med shows no substantial

change in the kurtosis, but conduction does produce a slightly less peaked distribution. High shows

a similar trend as the other models, with a slight increase in both the skewness and kurtosis, but

now with a noticeable difference in the extreme low-density tail of the log density PDF.

The top right panel of Figure 7 shows the effect of electron conduction on the logarithmic

temperature PDF. Like the density PDFs, the temperature PDFs are largely identical for Low and

Med. Only for the High simulation is there a small decrease in the PDF at the highest temperatures

at which conduction is most efficient, which is accompanied by an increase in the low-density end

of the density pdf. Thus it appears that in the highest Mach number cases, conduction is able to

operate quickly enough to move a noticeable amount of energy out of the hottest cells, moving some

of this energy into low density regions which are able to expand a bit more due to the increase in

pressure. However, these differences are small and suggest that electron conduction does not play

a major role.

In order to be simulate a large number of turbulent conditions for many eddy turnover times

in the presence of chemistry at reasonable CPU cost, our simulations have adopted a relatively

low resolution of 1283. In this case, two-point statistics such as the velocity and density power-

spectra and structure functions are not expected to be well reproduced (e.g., ?Kritsuk et al. 2007;

Pan & Scannapieco 2010), and we do not attempt to analyze them here. On the other hand,

the probability distribution function is a single-point quantity that is much easier to simulate at

moderate resolution.

As a check of convergence, the bottom left row of Figure 7 compares the PDF obtained in our

representative simulations with a second set of simulations with the same set of physical parameters,

but a resolution of 2563. Again, we find that the resulting PDFs are nearly identical to the nominal

runs and only in High case is there a slight decrease in the high temperature tail and a slight dip

in the low density tail. However, in terms of the mean and variance, the effect is minor, which

suggests that our nominal model with N = 128 is sufficient to produce the key one-point statistical

quantities and obtain estimates of the species abundances.

Finally, in Figure 8 we show the difference in the species abundances between our nominal

runs and the comparison runs including electron conduction and an increase in resolution. The

comparisons, which are also presented in Table 4, show that neither electron conduction nor an
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Table 4: Effect of resolution and electron conduction of the final elemental abundances. Each row

gives a difference species while each column gives a different simulation. High denotes models with

twice the base resolution and those with C denote models with electron conduction.
Col. (cm−2) 1.1E16 1.1E16 High 1.1E16 C 1.5E17 1.5E17 High 1.5E17 C 1.1E19 1.1E19 High 1.1E19 C

σ1D (km s−1) 5.8 5.8 5.8 20.2 20.2 20.2 57.7 57.7 57.7

H -0.23 -0.22 -0.15 -3.47 -3.50 -3.47 -0.37 -0.27 -0.29

H+ -0.39 -0.40 -0.52 0.00 0.00 0.00 -0.24 -0.34 -0.31

He -0.00 -0.00 -0.00 -2.54 -2.59 -2.56 -0.03 -0.02 -0.05

He+ -3.26 -3.34 -3.71 -0.07 -0.07 -0.07 -1.14 -1.30 -0.95

He2+ -17.28 -17.39 -17.92 -0.86 -0.81 -0.84 -3.07 -3.14 -2.48

C -0.67 -0.69 -0.60 -3.10 -3.14 -3.11 -0.37 -0.34 -0.36

C+ -0.11 -0.10 -0.13 -0.73 -0.75 -0.74 -0.25 -0.27 -0.26

C2+ -3.67 -3.60 -3.80 -0.10 -0.09 -0.09 -1.75 -2.26 -1.92

C3+ -14.19 -14.15 -18.30 -1.98 -1.91 -1.95 -3.31 -3.77 -3.20

C4+ -18.56 -18.41 -18.13 -3.47 -3.18 -3.63 -4.15 -4.26 -3.59

O -0.28 -0.26 -0.17 -3.07 -3.10 -3.07 -0.37 -0.27 -0.30

O+ -0.33 -0.35 -0.50 -0.44 -0.46 -0.44 -0.25 -0.34 -0.31

O2+ -7.62 -8.05 -13.47 -0.21 -0.20 -0.21 -2.02 -2.38 -1.94

O3+ -17.97 -17.82 -17.52 -1.88 -1.85 -1.93 -3.20 -3.62 -3.02

O4+ -18.92 -18.73 -18.44 -5.92 -5.85 -6.01 -4.73 -4.81 -4.54

O5+ -18.72 -18.57 -18.29 -11.67 -11.25 -11.84 -6.21 -5.96 -6.09

O6+ -18.85 -18.66 -18.49 -13.14 -10.67 -16.48 -7.53 -7.05 -6.88

O7+ -19.68 -19.17 -19.82 -20.89 -19.84 -20.17 -15.17 -17.10 -17.03

Na -4.26 -4.29 -4.29 -5.86 -5.85 -5.85 -2.10 -2.12 -2.22

Na+ -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Mg -1.40 -1.44 -1.36 -6.37 -6.39 -6.36 -0.65 -0.60 -0.65

Mg+ -0.18 -0.17 -0.12 -3.41 -3.44 -3.41 -0.31 -0.24 -0.24

Mg2+ -0.53 -0.54 -0.72 -0.00 -0.00 -0.00 -0.55 -0.76 -0.69
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increase in resolution has a substantial effect on our abundance results.

4.5. Parameter Dependencies

Having explored the evolution of three representative cases in detail, established convergence

of abundances at a resolution at 1283, and shown that conduction has only a minor effect, we turn

our attention to the full suite of models. Table 2 gives the overall parameters of each of these runs,

which span a large range of columns, temperatures, and Mach numbers. In most cases, we found

that heating from stirring and cooling from recombination are quickly balanced, as seen in the

Med simulation presented in Fig. 2. However, if the stirring is sufficiently strong that the average

temperature of the model exceeds 105K these models will undergo thermal runaway. This can be

explained by the fact that most elements have peaks in their cooling functions at ≈ 105K (e.g.,

Gnat & Ferland 2012; Oppenheimer & Schaye 2013). Therefore once the stirring passes this barrier,

cooling can no longer balance turbulent heating and a meaningful steady state can no longer be

achieved.

A summary of our final results is given in Table 5, which shows the final abundances for

all models that were able reach a steady state. Inspection of these abundances reveals many

interesting trends affecting commonly observed species. For example, without any contribution

from photoionization, He+ is often found at substantial levels, even when the average temperature

is 104K, and in many of these cases the H+ fraction can exceed 50% (as seen when σ1D = 35 km/s

and MMW = 2.8, or when σ1D = 58 km/s and MMW = 8.0).

On the other hand, C3+ mostly appears at substantial levels when the mean temperature is

significantly higher than 104K, such as in the σ1D = 11.5 km/s, TMW = 7.0× 104K, and σ1D = 20

km/s, TMW = 5.5 × 104K runs. Note however, that it is also seen in the high-mach number

σ1D = 58, km/s run with TMW = 1.1 × 104K, even though in CIE it is only expected in medium

with T ≥ 5 × 104K as shown in Fig. 1. Similarly, O3+, which has a slightly lower ionization

potential, is most abundant in runs with elevated temperatures or high mach numbers, although

at even higher fractions than seen in C3+.

Interestingly, although its ionization potential is only 5.1 eV, substantial levels of neutral

sodium are found in most of our simulations, particularly those with higher Mach numbers. In-

spections plots of the physical distribution of this ion show that it is mostly found in under-dense

regions, which drop to relatively low temperatures through adiabatic cooling in expantions. Finally,

Mg+ which recombines at 7.6 eV and is ionized at 15 eV is extremely abundant in all our simu-

lations, with the exception of the highest temperature σ1D = 11.5 km/s TMW = 7.0 × 104K, and

σ1D = 20 km/s TMW = 5.5×104K cases. In fact, in the absence of photoionization, the existence of

significant, cospatial Mg+, C3+, and O2+ is a clear indicator of a broad temperature-density PDF,

caused by supersonic turbulence.
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Table 5: Final steady-state abundances for our suite of models. Abundance values are given as

log10(Fi/FT ).
Col. (cm−2) 1.1E15 1.1E16 1.1E17 3.0E16 1.1E17 3.0E17 1.5E17 7.6E17 1.5E18 1.5E18 4.6E18 1.5E19 1.1E19 3.0E19 1.1E20

σ1D (km s−1) 5.8 5.8 5.8 11.5 11.5 11.5 20.2 20.2 20.2 34.6 34.6 34.6 57.7 57.7 57.7

TDW (104K) 2.55 1.49 1.26 7.01 1.30 1.14 5.54 1.01 0.87 1.12 0.90 0.83 1.06 0.86 0.77

MDW 0.29 0.51 0.61 0.44 1.06 1.26 0.91 2.39 2.78 4.13 4.63 5.32 7.98 8.79 10.6

H -1.03 -0.23 -0.03 -3.96 -0.19 -0.10 -3.47 -0.17 -0.09 -0.42 -0.19 -0.09 -0.37 -0.15 -0.07

H+ -0.04 -0.39 -1.13 0.00 -0.45 -0.68 0.00 -0.48 -0.73 -0.21 -0.44 -0.73 -0.24 -0.53 -0.81

He -0.00 -0.00 -0.00 -2.87 -0.17 -0.01 -2.54 -0.00 -0.00 -0.01 -0.00 -0.00 -0.03 -0.00 -0.00

He+ -2.20 -3.26 -4.58 -0.02 -0.49 -1.84 -0.07 -2.96 -3.68 -1.59 -2.72 -3.30 -1.14 -2.61 -2.94

He2+ -15.48 -17.28 -19.53 -1.27 -4.52 -7.37 -0.86 -9.96 -10.90 -5.22 -7.76 -9.17 -3.07 -5.66 -5.78

C -1.51 -0.67 -0.21 -3.71 -0.67 -0.46 -3.10 -0.50 -0.28 -0.63 -0.34 -0.19 -0.37 -0.19 -0.12

C+ -0.02 -0.11 -0.41 -1.05 -0.11 -0.19 -0.73 -0.17 -0.33 -0.12 -0.27 -0.44 -0.25 -0.44 -0.61

C2+ -2.15 -3.67 -6.06 -0.05 -3.95 -4.54 -0.10 -4.02 -4.50 -2.46 -3.36 -4.03 -1.75 -3.30 -3.75

C3+ -10.10 -14.19 -20.35 -1.53 -12.45 -13.21 -1.98 -11.00 -10.54 -5.69 -7.42 -9.28 -3.31 -6.01 -5.65

C4+ -18.50 -18.56 -20.01 -3.96 -16.07 -21.04 -3.47 -14.78 -16.02 -7.24 -10.76 -13.39 -4.15 -6.89 -7.15

O -1.25 -0.28 -0.05 -3.49 -0.50 -0.25 -3.07 -0.26 -0.10 -0.53 -0.20 -0.09 -0.37 -0.15 -0.08

O+ -0.03 -0.33 -0.99 -0.64 -0.17 -0.36 -0.44 -0.34 -0.70 -0.15 -0.43 -0.71 -0.25 -0.53 -0.79

O2+ -4.60 -7.62 -13.81 -0.13 -4.39 -7.06 -0.21 -5.74 -6.40 -3.17 -4.58 -5.47 -2.02 -4.20 -4.44

O3+ -18.07 -17.97 -17.73 -1.54 -14.15 -15.07 -1.88 -11.64 -11.91 -5.62 -8.00 -10.23 -3.20 -5.82 -5.70

O4+ -19.46 -18.92 -18.46 -5.51 -24.67 -25.59 -5.92 -20.29 -19.12 -8.90 -12.32 -16.24 -4.73 -7.68 -7.61

O5+ -19.54 -18.72 -18.22 -12.31 -26.39 -26.34 -11.67 -23.90 -26.03 -11.26 -16.89 -21.61 -6.21 -9.13 -10.90

O6+ -19.51 -18.85 -18.54 -18.62 -26.33 -26.33 -13.14 -26.34 -26.34 -14.61 -22.27 -26.33 -7.53 -10.96 -14.93

O7+ -21.43 -19.68 -19.64 -20.34 -26.54 -26.54 -20.89 -26.54 -26.55 -26.55 -26.56 -26.57 -15.17 -19.93 -23.88

Na -5.31 -4.26 -3.87 -5.76 -3.88 -3.51 -5.86 -2.91 -2.45 -2.75 -2.19 -1.98 -2.10 -1.86 -1.57

Na+ -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.01

Mg -2.97 -1.40 -0.98 -7.23 -1.29 -1.04 -6.37 -0.88 -0.67 -0.98 -0.61 -0.48 -0.65 -0.44 -0.35

Mg+ -0.83 -0.18 -0.06 -3.84 -0.16 -0.09 -3.41 -0.13 -0.12 -0.25 -0.18 -0.20 -0.31 -0.25 -0.29

Mg2+ -0.07 -0.53 -1.57 -0.00 -0.60 -1.03 -0.00 -0.93 -1.42 -0.48 -1.00 -1.38 -0.55 -1.13 -1.46
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In addition to Table 5 we make available online the data files from each run1. Each file

presents a variety of information, including the true abundances and the simple abundance estimates

presented in §4.3. We also give doppler parameters for each species, i, defined as,

b2i = σ2i,1D + 2kbTMW/AimH, (14)

where σi,1D is the 1D velocity dispersion, kb is the Boltzmann’s constant, and Ai is the ion atomic

mass. While the masses of hydrogen and helium are small enough that the temperature term makes

a substantial contribution, the doppler parameters of the heavier elements are very close to σi,1D
in general, providing a good measurement of the local velocity dispersion.

5. Conclusions

Turbulence pervades the Universe, often moving at supersonic speeds due to the high efficiency

of radiative cooling. These random motions provide overall support against gravity, but also con-

centrate a portion of the material to very high densities, giving rise to a multiphase distribution

with unique thermodynamic properties. This has a dramatic effect on the chemical makeup of

the medium. Specifically, if the recombination time for a given species is long compared to the

eddy turnover time, it cannot reach an equilibrium state before it is further acted upon by the

turbulence. This creates a situation in which the final ionization state is not only a function of the

temperature and density, but also a function of the rate at which parcels of gas move through these

distributions.

To study how these abundances are altered by turbulence, we have implemented a nonequillib-

rium atomic chemistry package within FLASH. This package tracks the evolution of six elements

and 24 separate ionization states. In addition, we have used the method of Gnat & Ferland (2012)

to derive ion-by-ion cooling curves for each of the ions under consideration that allows us to follow

the thermodynamic evolution of the gas. The result is a very fast and efficient package, which we

are able to run for many eddy turn over times for many cases.

Using this tool, we have performed a suite of direct numerical simulations of solenoidally-

driven turbulence over a range from 1D velocity dispersion of σ1D= 6 to 58 km s−1 and the product

of the mean density and turbulent length scale from 1016 to 1020 cm−2 for solar metallicity gas,

concentrating on three representative models. As found by isothermal models of driven turbulence,

the gas approximates a lognormal distribution, whose logarithmic density variance in the supersonic

case is well approximated by σ2s = ln(1 + b2M2). On the other hand, this expression overestimates

the variance at subsonic Mach numbers, and the b = 0.53 value that best fits our data is significantly

different from the b = 1/3 value measured in solenoidally-driven, isothermal turbulence.

We compare the final steady state abundances in our simulations to those obtained assuming

1http://zofia.sese.asu.edu/ evan/turbspecies/
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the gas is in collisional ionization equilibrium, using both the mean temperature and the full

temperature PDF. We find that at low mach numbers the estimates agree to within a factor of ≈ 2

for most species, save for He2+ and C2+, which show large deviations due to their long recombination

times. At intermediate mach numbers, several species such as He, C, C+, C3+, O3+, and Mg, differ

by a factor of ≈ 2 from our simple estimates, while He2+ and C4+ are ≈ 5 more abundant than

our simples estimates suggest. Finally, for very high mach numbers, the abundances can vary by

many orders of magnitude from simple estimates. Neither increasing the resolution by a factor of

two or including of thermal electron conduction has a significant effect on these abundances.

These results underscore the fact that transsonic and supersonic turbulence can drastically alter

the abundances and that only nonequillibrium calculations can predict these changes accurately.

Thus we make make all of the derived properties from our models available online. In particular, we

present the logarithmic density statistics and other hydrodynamic quantities, such as Mach number

and average temperature. We also give the final abundances for each species, the abundance values

from the two simple estimates, and species by species doppler parameters.

In future work we, plan on increasing our network to include ions of nitrogen (N-N5+), silicon

(Si-Si4+), and iron (Fe-Fe3+) and their associated cooling as well as the effects of photoionization.

Using this increased network, we will run similar models as those presented here, again compiling

important statistical properties and the final ionization structure of the gas. This will result in a

large set of tables, useful for a variety of theoretical and observational applications.

We would like to thank Christopher Matzner, Cody Raskin, Eve Ostriker, Robert J. Thacker,

and David Williamson for helpful discussions. The software used in this work was in part developed

by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This work was

performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. ES was supported by NSF grant AST11-03608,
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